膝盖发热是什么原因| 新房送什么礼物好| 小米是什么| 绒毛膜促性腺激素是什么意思| 3月6号是什么星座的| 什么可以治早泄| 什么食物补血效果最好最快| 荞麦是什么| 什么样的晚霞| 夹腿是什么意思| 脚心有痣代表什么| 低钠盐是什么意思| 孕初期吃什么对胎儿好| 阑尾炎是什么原因引起的| 来例假肚子疼是什么原因| 灶心土是什么| 梦见月经血是什么预兆| 望闻问切的闻是什么意思| 什么东东是什么意思| 经常胃胀是什么原因| 姐姐的孩子叫我什么| 血压高吃什么降压药| 黄芪有什么功效| 十月一日是什么日子| 王玉什么字| 贫血吃什么好| 苍蝇喜欢什么味道| 你最喜欢的食物是什么| 骨折挂什么科| 马头岩肉桂是什么茶| 夏天感冒吃什么药| 子宫回声欠均匀是什么意思| 什么的寒风| 心悸是什么病| 长疮是什么原因| 血糖高不能吃什么| yq是什么意思| 吾矛之利的利什么意思| 陶和瓷有什么区别| s925是什么意思| 1996年五行属什么| 家财万贯是什么动物| 今年二十岁属什么生肖| 维生素d和d3有什么区别| 心跳的快是什么原因| 12月23是什么星座| 抽筋是什么原因引起的| 小孩瘦小不长肉是什么原因| 人工肝是什么意思| ks是什么意思| 后背痛什么原因| 一个草字头一个氏念什么| 白头发有什么方法变黑| 身份证有x代表什么| 六月份出生的是什么星座| 什么原因会怀上葡萄胎| 额头容易出汗是什么原因| 孽债是什么意思| 补肾吃什么好| 排酸对身体有什么好处| 为什么会紫外线过敏| 什么蔬菜| 市检察长是什么级别| 医院五行属什么| 梦见别人开车撞死人是什么意思| 汗疱疹是什么原因引起的| 假性近视是什么意思| 缺碘会有什么症状| hcg什么时候查最准确| 灵魂是什么意思| 心属于五行属什么| 敏使朗是什么药| 蝙蝠侠叫什么| 落班是什么意思| 高玩是什么意思| 十一月三十是什么星座| 牙疼可以吃什么| skp什么意思| 屠苏指的是什么| 男生爱出汗是什么原因| 推车是什么意思| 冷血动物是什么意思| pe医学上是什么意思| 甲状腺不均质改变是什么意思| 舌苔厚白是什么原因| 一物降一物前面一句是什么| rh血型是什么意思| 刮痧是什么| 早泄吃什么中药| 一失足成千古恨是什么意思| 嗜是什么意思| 肚脐的左边疼是什么原因| 五行缺什么怎么算| 血象高是什么原因| 小酌怡情下一句是什么| 吃饭的时候恶心想吐是什么原因| 新手摆地摊卖什么好| 女人五行缺水是什么命| bid什么意思| 猫咪掉胡子是什么原因| 今天是什么日子| 6月4号是什么星座| 革兰阳性杆菌是什么病| 吃什么可以让子宫内膜变薄| 树叶像什么比喻句| 龟头上抹什么可以延时| 梦见打台球是什么意思| 这是什么植物| 田七煲汤配什么材料| 50而知天命什么意思| 狼烟是什么意思| 中耳炎挂什么科| 阴虚火旺有什么表现症状| 花生吃多了有什么坏处| 性行为是什么| 生地麦冬汤有什么功效| 岁月的痕迹是什么意思| 复方板蓝根和板蓝根有什么区别| 办健康证要带什么证件| 蜂蜜水喝了有什么好处| 泥石流是什么| 植物的根有什么作用| 女人怕冷是什么原因| 老虎属于什么科| 吴刚和嫦娥什么关系| 喝蒲公英茶有什么作用| 苹果什么时候出新手机| 丛生是什么意思| 谥号是什么意思| 口苦吃什么好得快| 质子泵抑制剂是什么药| 羊奶粉和牛奶粉有什么区别| 青什么黄什么| 岁月蹉跎是什么意思| 壁虎怕什么| 什么有洞天| 日出扶桑是什么意思| 鼻梁骨骨折属于什么伤| 丑未相冲的结果是什么| 胡牌是什么意思| 妇科支原体感染吃什么药| 广州有什么小吃特产| 放风筝是什么季节| 扁平足是什么| 广东有什么好玩的地方| 菊花泡水喝有什么功效| 木鱼花是什么做的| 手突然抽搐是什么原因| 碧色是什么颜色| 卤水是什么东西| 谷子是什么| 鱼刺卡喉咙挂什么科| 诺言背叛诺言是什么歌| 团长什么级别| 佛陀是什么意思| 放屁多是什么原因引起的| 男属兔和什么属相最配| 补肾最好的药是什么药| 吸血鬼初拥是什么意思| 处女座是什么星象| 高血压中医叫什么| 吃什么有营养| 白带黄色是什么原因| 乙肝通过什么途径传染| 心率低有什么危害| 今年是什么年号| 大驿土是什么意思| 曲奇饼干为什么不成形| 吃什么奶水多| 甲子日是什么意思| 慢性病都包括什么病| 肋骨骨折什么症状| 妥协是什么意思| 汗疱疹涂什么药膏| 语迟则人贵是什么意思| 大将是什么级别| 四海扬名是什么生肖| 血糖低会出现什么症状| 属猪的本命佛是什么佛| 男人结扎有什么好处| 肾炎是什么病| 右眼皮跳是什么预兆| pop店铺是什么意思| 前戏是什么意思| 形体是什么意思| 美国为什么叫鹰酱| 湿气重要吃什么| 沧州有什么好玩的地方| 田字出头是什么字| 亚瑟士和鬼冢虎的区别是什么| 便秘什么原因| 6月12日什么星座| 什么书比较好| 手术后可以吃什么水果| 牛蹄筋炖什么好吃| 什么东东| 什么是有氧运动和无氧运动| 苹果像什么| 什么是桑黄| 大腿正面是什么经络| 暗示是什么意思| 海马炖什么好小孩长高| c1是什么意思| 光敏反应是什么意思| 药流后吃什么消炎药比较好| 尿道感染是什么原因引起| 附件囊肿吃什么药可以消除| 农历10月22日是什么星座| 附件是什么| 太阳出来我爬山坡是什么歌| 梦到装修房子是什么征兆| 3月18日什么星座| 脖子肿了是什么原因| 液氨是什么| 七月六号是什么星座| 为什么一睡觉就做梦| 热天不出汗是什么原因| 舌头有黑点是什么原因| 的意思是什么| 3.3是什么星座| 桂花是什么生肖| 桃代表什么生肖| 十岁女孩喜欢什么礼物| 总ige高是什么意思| goldlion是什么牌子| 什么方法避孕最安全有效| 香蕉对身体有什么好处| 什么样的女孩容易招鬼| 贝壳是什么垃圾| 边界欠清是什么意思| 做梦大便是什么意思| 高血压检查什么项目| 时辰宜忌是什么意思| 胃反流吃什么药效果好| 尿毒症小便什么颜色| 周二右眼皮跳是什么预兆| 水肿是什么意思| 在什么中间| 如法炮制是什么意思| 1800年是什么朝代| 皮脂腺痣是什么原因引起的| 什么是耦合| 小孩晚上睡觉流口水是什么原因| 低聚果糖是什么东西| 芹菜什么时候种植| 痔疮发痒是什么原因| 牛仔裤搭配什么鞋| 青龙是什么| 手心红是什么原因| 房性早搏什么意思| 脑萎缩是什么原因引起的| 脑白质疏松是什么病| 热水器什么品牌好| 7月12日什么星座| 脑梗怎么形成的原因是什么| 贴士是什么意思| 痛风都不能吃什么东西| 比基尼是什么意思| 检查肝肾功能挂什么科| 涵字属于五行属什么| 地钱是什么植物| 补气养阴是什么意思| 孙悟空被压在什么山下| hdl是什么意思| 百度Jump to content

苹果iOS10.3.2 Beta3开发者预览版固件下载地址

From Wikipedia, the free encyclopedia
(Redirected from Cosmic strings)
百度 美好挑战计划则是以一种站内运营的方式发起挑战,主要的合作对象包括公益组织和媒体等相关机构,抖音计划在未来半年与它们一起,在站内外发起50场相关活动。

Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simply connected.

In less formal terms, they are hypothetical long, thin defects in the fabric of space. They might have formed in the early universe during a process where certain symmetries were broken. Their existence was first contemplated by the theoretical physicist Tom Kibble in the 1970s.[1]

The formation of cosmic strings is somewhat analogous to the imperfections that form between crystal grains in solidifying liquids, or the cracks that form when water freezes into ice. The phase transitions leading to the production of cosmic strings are likely to have occurred during the earliest moments of the universe's evolution, just after cosmological inflation, and are a fairly generic prediction in both quantum field theory and string theory models of the early universe.

Theories containing cosmic strings

[edit]

The prototypical example of a field theory with cosmic strings is the Abelian Higgs model. The quantum field theory and string theory cosmic strings are expected to have many properties in common, but more research is needed to determine the precise distinguishing features. The F-strings for instance are fully quantum-mechanical and do not have a classical definition, whereas the field theory cosmic strings are almost exclusively treated classically.

In superstring theory, the role of cosmic strings can be played by the fundamental strings (or F-strings) themselves that define the theory perturbatively, by D-strings which are related to the F-strings by weak-strong or so called S-duality, or higher-dimensional D-, NS- or M-branes that are partially wrapped on compact cycles associated to extra spacetime dimensions so that only one non-compact dimension remains.[2]

Dimensions

[edit]

Cosmic strings, if they exist, would be extremely thin topological defects with diameters of the same order of magnitude as that of a proton, i.e. ~ 1 fm, or smaller. Given that this scale is much smaller than any cosmological scale, these strings are often studied in the zero-width, or Nambu–Goto approximation. Under this assumption, strings behave as one-dimensional objects and obey the Nambu–Goto action, which is classically equivalent to the Polyakov action that defines the bosonic sector of superstring theory.

In field theory, the string width is set by the scale of the symmetry breaking phase transition. In string theory, the string width is set (in the simplest cases) by the fundamental string scale, warp factors (associated to the spacetime curvature of an internal six-dimensional spacetime manifold) and/or the size of internal compact dimensions. (In string theory, the universe is either 10- or 11-dimensional, depending on the strength of interactions and the curvature of spacetime.)

Gravitation

[edit]

A string is a geometrical deviation from Euclidean geometry in spacetime characterized by an angular deficit: a circle around the outside of a string would comprise a total angle less than 360°. [3] From the general theory of relativity such a geometrical defect must be in tension, and would be manifested by mass. Even though cosmic strings are thought to be extremely thin, they would have immense density, and so would represent significant gravitational wave sources. A cosmic string about a kilometer in length may be more massive than the Earth.

However general relativity predicts that the gravitational potential of a straight string vanishes: there is no gravitational force on static surrounding matter. The only gravitational effect of a straight cosmic string is a relative deflection of matter (or light) passing the string on opposite sides (a purely topological effect). A closed cosmic string gravitates in a more conventional way.[clarification needed]

During the expansion of the universe, cosmic strings would form a network of loops, and in the past it was thought that their gravity could have been responsible for the original clumping of matter into galactic superclusters. It is now calculated that their contribution to the structure formation in the universe is less than 10%.

Negative mass cosmic string

[edit]

The standard model of a cosmic string is a geometrical structure with an angle deficit, which thus is in tension and hence has positive mass. In 1995, Visser et al. proposed that cosmic strings could theoretically also exist with angle excesses, and thus negative tension and hence negative mass. The stability of such exotic matter strings is problematic; however, they suggested that if a negative mass string were to be wrapped around a wormhole in the early universe, such a wormhole could be stabilized sufficiently to exist in the present day.[4][5]

Super-critical cosmic string

[edit]

The exterior geometry of a (straight) cosmic string can be visualized in an embedding diagram as follows: Focusing on the two-dimensional surface perpendicular to the string, its geometry is that of a cone which is obtained by cutting out a wedge of angle δ and gluing together the edges. The angular deficit δ is linearly related to the string tension (= mass per unit length), i.e. the larger the tension, the steeper the cone. Therefore, δ reaches 2π for a certain critical value of the tension, and the cone degenerates to a cylinder. (In visualizing this setup one has to think of a string with a finite thickness.) For even larger, "super-critical" values, δ exceeds 2π and the (two-dimensional) exterior geometry closes up (it becomes compact), ending in a conical singularity.

However, this static geometry is unstable in the super-critical case (unlike for sub-critical tensions): Small perturbations lead to a dynamical spacetime which expands in axial direction at a constant rate. The 2D exterior is still compact, but the conical singularity can be avoided, and the embedding picture is that of a growing cigar. For even larger tensions (exceeding the critical value by approximately a factor of 1.6), the string cannot be stabilized in radial direction anymore.[6]

Realistic cosmic strings are expected to have tensions around 6 orders of magnitude below the critical value, and are thus always sub-critical. However, the inflating cosmic string solutions might be relevant in the context of brane cosmology, where the string is promoted to a 3-brane (corresponding to our universe) in a six-dimensional bulk.

Observational evidence

[edit]

It was once thought that the gravitational influence of cosmic strings might contribute to the large-scale clumping of matter in the universe, but all that is known today through galaxy surveys and precision measurements of the cosmic microwave background (CMB) fits an evolution out of random, gaussian fluctuations. These precise observations therefore tend to rule out a significant role for cosmic strings and currently it is known that the contribution of cosmic strings to the CMB cannot be more than 10%.

The violent oscillations of cosmic strings generically lead to the formation of cusps and kinks. These in turn cause parts of the string to pinch off into isolated loops. These loops have a finite lifespan and decay (primarily) via gravitational radiation. This radiation which leads to the strongest signal from cosmic strings may in turn be detectable in gravitational wave observatories. An important open question is to what extent do the pinched off loops backreact or change the initial state of the emitting cosmic string—such backreaction effects are almost always neglected in computations and are known to be important, even for order of magnitude estimates.

Gravitational lensing of a galaxy by a straight section of a cosmic string would produce two identical, undistorted images of the galaxy. In 2003 a group led by Mikhail Sazhin reported the accidental discovery of two seemingly identical galaxies very close together in the sky, leading to speculation that a cosmic string had been found.[7] However, observations by the Hubble Space Telescope in January 2005 showed them to be a pair of similar galaxies, not two images of the same galaxy.[8][9] A cosmic string would produce a similar duplicate image of fluctuations in the cosmic microwave background, which it was thought might have been detectable by the Planck Surveyor mission.[10] However, a 2013 analysis of data from the Planck mission failed to find any evidence of cosmic strings.[11]

A piece of evidence supporting cosmic string theory is a phenomenon noticed in observations of the "double quasar" called Q0957+561A,B. Originally discovered by Dennis Walsh, Bob Carswell, and Ray Weymann in 1979, the double image of this quasar is caused by a galaxy positioned between it and the Earth. The gravitational lens effect of this intermediate galaxy bends the quasar's light so that it follows two paths of different lengths to Earth. The result is that we see two images of the same quasar, one arriving a short time after the other (about 417.1 days later). However, a team of astronomers at the Harvard-Smithsonian Center for Astrophysics led by Rudolph Schild studied the quasar and found that during the period between September 1994 and July 1995 the two images appeared to have no time delay; changes in the brightness of the two images occurred simultaneously on four separate occasions. Schild and his team believe that the only explanation for this observation is that a cosmic string passed between the Earth and the quasar during that time period traveling at very high speed and oscillating with a period of about 100 days.[12]

Until 2023 the most sensitive bounds on cosmic string parameters came from the non-detection of gravitational waves by pulsar timing array data.[13] The first detection of gravitational waves with pulsar timing array was confirmed in 2023.[14][15] The earthbound Laser Interferometer Gravitational-Wave Observatory (LIGO) and especially the space-based gravitational wave detector Laser Interferometer Space Antenna (LISA) will search for gravitational waves and are likely to be sensitive enough to detect signals from cosmic strings, provided the relevant cosmic string tensions are not too small.

String theory and cosmic strings

[edit]

During the early days of string theory both string theorists and cosmic string theorists believed that there was no direct connection between superstrings and cosmic strings (the names were chosen independently by analogy with ordinary string). The possibility of cosmic strings being produced in the early universe was first envisioned by quantum field theorist Tom Kibble in 1976,[1] and this sprouted the first flurry of interest in the field.

In 1985, during the first superstring revolution, Edward Witten contemplated on the possibility of fundamental superstrings having been produced in the early universe and stretched to macroscopic scales, in which case (following the nomenclature of Tom Kibble) they would then be referred to as cosmic superstrings.[16] He concluded that had they been produced they would have either disintegrated into smaller strings before ever reaching macroscopic scales (in the case of Type I superstring theory), they would always appear as boundaries of domain walls whose tension would force the strings to collapse rather than grow to cosmic scales (in the context of heterotic superstring theory), or having a characteristic energy scale close to the Planck energy they would be produced before cosmological inflation and hence be diluted away with the expansion of the universe and not be observable.

Much has changed since these early days, primarily due to the second superstring revolution. It is now known that string theory contains, in addition to the fundamental strings which define the theory perturbatively, other one-dimensional objects, such as D-strings, and higher-dimensional objects such as D-branes, NS-branes and M-branes partially wrapped on compact internal spacetime dimensions, while being spatially extended in one non-compact dimension. The possibility of large compact dimensions and large warp factors allows strings with tension much lower than the Planck scale.

Furthermore, various dualities that have been discovered point to the conclusion that actually all these apparently different types of string are just the same object as it appears in different regions of parameter space. These new developments have largely revived interest in cosmic strings, starting in the early 2000s.

In 2002, Henry Tye and collaborators predicted the production of cosmic superstrings during the last stages of brane inflation,[17] a string theory construction of the early universe that gives leads to an expanding universe and cosmological inflation. It was subsequently realized by string theorist Joseph Polchinski that the expanding Universe could have stretched a "fundamental" string (the sort which superstring theory considers) until it was of intergalactic size. Such a stretched string would exhibit many of the properties of the old "cosmic" string variety, making the older calculations useful again. As theorist Tom Kibble remarks, "string theory cosmologists have discovered cosmic strings lurking everywhere in the undergrowth". Older proposals for detecting cosmic strings could now be used to investigate superstring theory.

Superstrings, D-strings or the other stringy objects mentioned above stretched to intergalactic scales would radiate gravitational waves, which could be detected using experiments like LIGO and especially the space-based gravitational wave experiment LISA. They might also cause slight irregularities in the cosmic microwave background, too subtle to have been detected yet but possibly within the realm of future observability.

Note that most of these proposals depend, however, on the appropriate cosmological fundamentals (strings, branes, etc.), and no convincing experimental verification of these has been confirmed to date. Cosmic strings nevertheless provide a window into string theory. If cosmic strings are observed, which is a real possibility for a wide range of cosmological string models, this would provide the first experimental evidence of a string theory model underlying the structure of spacetime.

Cosmic string network

[edit]

There are many attempts to detect the footprint of a cosmic strings network.[18][19][20]

Potential applications

[edit]

In 1986, John G. Cramer proposed that spacecraft equipped with magnet coils could travel along cosmic strings, analogous to how a maglev train travels along a rail line.[21]

See also

[edit]
  • 0-dimensional topological defect: magnetic monopole
  • 2-dimensional topological defect: domain wall (e.g. of 1-dimensional topological defect: a cosmic string)
  • Cosmic string loop stabilised by a fermionic supercurrent: vorton

References

[edit]
  1. ^ a b Kibble, Tom W K (1976). "Topology of cosmic domains and strings". Journal of Physics A: Mathematical and General. 9 (8): 1387–1398. Bibcode:1976JPhA....9.1387K. doi:10.1088/0305-4470/9/8/029.
  2. ^ Copeland, Edmund J; Myers, Robert C; Polchinski, Joseph (2004). "Cosmic F- and D-strings". Journal of High Energy Physics. 2004 (6): 013. arXiv:hep-th/0312067. Bibcode:2004JHEP...06..013C. doi:10.1088/1126-6708/2004/06/013. S2CID 140465.
  3. ^ Gott, J. Richard (1991). "Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions". Phys. Rev. Lett. 66 (9): 1126–1129. Bibcode:1991PhRvL..66.1126G. doi:10.1103/PhysRevLett.66.1126. PMID 10044002.
  4. ^ Cramer, John; Forward, Robert; Morris, Michael; Visser, Matt; Benford, Gregory; Landis, Geoffrey (1995). "Natural wormholes as gravitational lenses". Physical Review D. 51 (6): 3117–3120. arXiv:astro-ph/9409051. Bibcode:1995PhRvD..51.3117C. doi:10.1103/PhysRevD.51.3117. PMID 10018782. S2CID 42837620.
  5. ^ "Searching for a 'Subway to the Stars'" (Press release). Archived from the original on 2025-08-07.
  6. ^ Niedermann, Florian; Schneider, Robert (2015). "Radially stabilized inflating cosmic strings". Phys. Rev. D. 91 (6): 064010. arXiv:1412.2750. Bibcode:2015PhRvD..91f4010N. doi:10.1103/PhysRevD.91.064010. S2CID 118411378.
  7. ^ Sazhin, M.; Longo, G.; Capaccioli, M.; Alcala, J. M.; Silvotti, R.; Covone, G.; Khovanskaya, O.; Pavlov, M.; Pannella, M.; et al. (2003). "CSL-1: Chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?". Monthly Notices of the Royal Astronomical Society. 343 (2): 353. arXiv:astro-ph/0302547. Bibcode:2003MNRAS.343..353S. doi:10.1046/j.1365-8711.2003.06568.x. S2CID 18650564.
  8. ^ Agol, Eric; Hogan, Craig; Plotkin, Richard (2006). "Hubble imaging excludes cosmic string lens". Physical Review D. 73 (8): 87302. arXiv:astro-ph/0603838. Bibcode:2006PhRvD..73h7302A. doi:10.1103/PhysRevD.73.087302. S2CID 119450257.
  9. ^ Sazhin, M. V.; Capaccioli, M.; Longo, G.; Paolillo, M.; Khovanskaya, O. S.; Grogin, N. A.; Schreier, E. J.; Covone, G. (2006). "The true nature of CSL-1". arXiv:astro-ph/0601494.
  10. ^ Fraisse, Aurélien; Ringeval, Christophe; Spergel, David; Bouchet, Fran?ois (2008). "Small-angle CMB temperature anisotropies induced by cosmic strings". Physical Review D. 78 (4): 43535. arXiv:0708.1162. Bibcode:2008PhRvD..78d3535F. doi:10.1103/PhysRevD.78.043535. S2CID 119145024.
  11. ^ Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Beno?t, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; et al. (2013). "Planck 2013 results. XXV. Searches for cosmic strings and other topological defects". Astronomy & Astrophysics. 571: A25. arXiv:1303.5085. Bibcode:2014A&A...571A..25P. doi:10.1051/0004-6361/201321621. S2CID 15347782.
  12. ^ Schild, R.; Masnyak, I. S.; Hnatyk, B. I.; Zhdanov, V. I. (2004). "Anomalous fluctuations in observations of Q0957+561 A,B: Smoking gun of a cosmic string?". Astronomy and Astrophysics. 422 (2): 477–482. arXiv:astro-ph/0406434. Bibcode:2004A&A...422..477S. doi:10.1051/0004-6361:20040274. S2CID 16939392.
  13. ^ Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, Jim; Cornish, Neil; Demorest, Paul; Deng, Xihao; Dolch, Tim; Ellis, Justin; Ferdman, Rob; Fonseca, Emmanuel; Garver-Daniels, Nate; Jenet, Fredrick; Jones, Glenn; Kaspi, Vicky; Koop, Michael; Lam, Michael; Lazio, Joseph; Levin, Lina; Lommen, Andrea; Lorimer, Duncan; Luo, Jin; Lynch, Ryan; Madison, Dustin; McLaughlin, Maura; McWilliams, Sean; et al. (2015). "The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background". The Astrophysical Journal. 821 (1): 13. arXiv:1508.03024. Bibcode:2016ApJ...821...13A. doi:10.3847/0004-637X/821/1/13. S2CID 34191834.
  14. ^ Shelton, Jim (2025-08-07). "Astrophysicists present first evidence of gravitational wave 'background' | Yale News". news.yale.edu. Retrieved 2025-08-07.
  15. ^ Rini, Matteo (2025-08-07). "Researchers Capture Gravitational-Wave Background with Pulsar "Antennae"". Physics. 16: 118.
  16. ^ Witten, Edward (1985). "Cosmic Superstrings". Phys. Lett. B. 153 (4–5): 243–246. Bibcode:1985PhLB..153..243W. doi:10.1016/0370-2693(85)90540-4.
  17. ^ Sarangi, Saswat; Tye, S.-H.Henry (2002). "Cosmic string production towards the end of brane inflation". Physics Letters B. 536 (3–4): 185. arXiv:hep-th/0204074. Bibcode:2002PhLB..536..185S. doi:10.1016/S0370-2693(02)01824-5. S2CID 14274241.
  18. ^ Movahed, M. Sadegh; Javanmardi, B.; Sheth, Ravi K. (2025-08-07). "Peak–peak correlations in the cosmic background radiation from cosmic strings". Monthly Notices of the Royal Astronomical Society. 434 (4): 3597–3605. arXiv:1212.0964. Bibcode:2013MNRAS.434.3597M. doi:10.1093/mnras/stt1284. ISSN 0035-8711. S2CID 53499674.
  19. ^ Vafaei Sadr, A; Movahed, S M S; Farhang, M; Ringeval, C; Bouchet, F R (2025-08-07). "A Multiscale pipeline for the search of string-induced CMB anisotropies". Monthly Notices of the Royal Astronomical Society. 475 (1): 1010–1022. arXiv:1710.00173. Bibcode:2018MNRAS.475.1010V. doi:10.1093/mnras/stx3126. ISSN 0035-8711. S2CID 5825048.
  20. ^ Vafaei Sadr, A; Farhang, M; Movahed, S M S; Bassett, B; Kunz, M (2025-08-07). "Cosmic string detection with tree-based machine learning". Monthly Notices of the Royal Astronomical Society. 478 (1): 1132–1140. arXiv:1801.04140. Bibcode:2018MNRAS.478.1132V. doi:10.1093/mnras/sty1055. ISSN 0035-8711. S2CID 53330913.
  21. ^ "Alternate View Column AV-19". www.npl.washington.edu. Retrieved 2025-08-07.
[edit]
血管炎吃什么药最有效 6朵玫瑰代表什么意思 流产后吃什么水果好 跳蚤是什么样的图片 氮泵有什么作用
流产可以吃什么水果 什么是阻生牙 趴着睡觉是什么原因 自费是什么意思 华盖是什么意思
茄子和什么不能一起吃 ab血型和o血型的孩子是什么血型 用什么刷牙能使牙齿变白 脖子疼什么原因 便秘吃什么药效果好
韩语欧巴是什么意思 糖尿病不能吃什么水果 肺大泡有什么症状 天时地利人和什么意思 vain是什么意思
家里有蜈蚣是什么原因hcv9jop3ns6r.cn 柏字五行属什么hcv7jop9ns0r.cn 不检点是什么意思hcv8jop3ns5r.cn 为什么会便血hcv8jop7ns2r.cn 白色鼻毛是什么原因hcv8jop5ns1r.cn
玄学什么意思xjhesheng.com 1990是什么生肖youbangsi.com 时蔬是什么菜jingluanji.com 女人脚腿肿是什么原因hcv7jop7ns1r.cn 挂了是什么意思hcv8jop4ns2r.cn
打嗝挂什么科hcv9jop0ns1r.cn ushi是什么品牌男装hcv9jop6ns0r.cn dbp是什么意思0297y7.com 头发突然秃了一块是什么原因hcv9jop5ns4r.cn 史诗级什么意思hcv9jop3ns0r.cn
梦见迁祖坟有什么预兆hcv9jop5ns5r.cn 狗狗睡姿代表什么图解hcv8jop5ns8r.cn 为什么井盖是圆的hcv7jop9ns7r.cn 9月9日什么星座hcv8jop8ns9r.cn 雄脱是什么意思hcv8jop1ns0r.cn
百度